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a b s t r a c t

We can define structural indices of polymer or biopolymer complex structures and use them in the
prediction of new drug targets in parasites. For instance, Plasmodium falciparum causes the most severe
form of Malaria and kills up to 2.7 million people annually whereas Plasmodium vivax is geographically
the most widely distributed cause with more than 80 million clinical cases. Due to drug resistance and
toxicity, discovering novel drug targets is mandatory; such as Protein–Protein Complexes unique in this
pathogen and not present in human host (pPPCs). Additionally, the 3D structure of an increasing number
of Plasmodium proteins is being reported in public databases making easier the development of bio-
informatics models to predict pPPCs. In addition, some PPCs expressed both in parasite and human, such
as DHFR synthase, play a significant role in drug resistance in both Malaria and Human Cancer. However,
there are no general models to predict pPPCs using indices of PPC biopolymer structure. Therefore, we
introduced herein new Markov Chain numerical descriptors of protein–protein Interactions (PPIs) based
on electrostatic entropy measures and calculated these parameters for 5257 pairs of proteins (774 pPPCs
and 4483 non-pPPCs) from more than 20 organisms, including parasite and human hosts. We found
a simple Classification Tree with high Accuracy, Sensitivity, and Specificity (90.2–98.5%) both in training
and independent test sub-sets and implemented this predictor in the user-friendly web server Plas-
modPPI freely available at http://miaja.tic.udc.es/Bio-AIMS/PlasmodPPI.php.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Plasmodium falciparum (P. falciparum) represents one of the
strongest selective forces on the human genome. This stable and
perennial pressure has contributed to the progressive accumulation
in the exposed populations of genetic adaptations to malaria.
Descriptive genetic epidemiology provides the initial step of
a logical procedure of consequential phases spanning from the
identification of genes involved in the resistance/susceptibility to
diseases, to the determination of the underlying mechanisms and
finally to the possible translation of the acquired knowledge in new
control tools [1]. In addition, Plasmodium vivax (P. vivax) is
geographically the most widely distributed cause of malaria in
people, with up to 2.5 billion people at risk and an estimated 80
million to 300 million clinical cases every year, including severe
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disease and death. Despite this large burden of disease, P. vivax is
overlooked and left in the shadow of the enormous problem caused
by P. falciparum in Sub-Saharan Africa. Both technological advances
enabling the sequencing of the P. vivax genome and a recent call for
worldwide malaria eradication have placed a new emphasis on the
importance of addressing P. vivax as a major public health problem.
However, because of this parasite’s biology, it is especially difficult
to interrupt the transmission of P. vivax, and experts agree that the
available methods for preventing and treating both infections with
P. vivax and P. falciparum are inadequate [2]. Malaria, perhaps one of
the most serious and widespread diseases encountered by
mankind, continues to be a major threat to about 40% of the world’s
population, especially in the developing world. As malaria vaccines
remain problematic, chemotherapy still is the most important
weapon in the fight against the disease. However, almost all
available drugs have been compromised by the highly adaptable
parasite, and the increasing drug resistance of P. falciparum
continues to be the main problem. Therefore, the limited clinical
repertoire of effective drugs and the emergence of multi-resistant
strains substantiate the need for new proteins, or the discovery of
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new functions for known proteins, that may become targets of new
anti-malarial compounds or the discovery of proteins involved in
multi-drug resistance [3–8]. It is thus imperative that the devel-
opment of new methods and strategies becomes a priority [2]. In
this regard, stable protein–protein complexes formed by Protein–
Protein Interactions (PPIs) may become interesting targets for new
drugs and other treatment methods or strategies. For instance,
there are high-molecular-weight rhoptry proteins of P. falciparum
in a multi-protein complex consisting of proteins of 140, 130, and
110 kDa. The complex of rhoptry proteins binds to human and
mouse erythrocyte membranes in association with a 120 kDa SERA
protein. These proteins are believed to participate in the process of
erythrocyte invasion. Sam-Yellowed have used six different
antibodies (polyclonal and monoclonal) known to precipitate the
high-molecular-weight rhoptry protein complex to analyze the
structural relationship of proteins within the complex. The results
provided insights concerning the mechanism of protein–protein
interaction within the complex [9].

These types of results indicate that physically stable protein–
protein biopolymer complexes (pPPC) made up of unique PPIs of
Plasmodium sp. parasites (pPPIs) and not present in humans or
other hosts may be promising targets for the development of safe
drugs with low toxicity. On the contrary, the prediction of non-
pPPC (non-unique Plasmodium sp. parasites but also present in
humans) may become a source for the discovery of targets related
to drug resistance not only for the treatment of malaria but also of
human cancer. For instance, Human Dihydrofolate Reductase
(DHFR) constitutes a primary target for antifolate drugs in cancer
treatment, whereas DHFRs from P. falciparum and P. vivax are
primary targets in the treatment of malaria. A recent review [10]
has discussed the structural and functional impact of active-site
mutations with respect to enzyme activity and antifolate resis-
tance of DHFRs from mammals, protozoa and bacteria. DHFR is
a monomeric protein with only one chain in structures deposited
in PDB. However, DHFR synthase is a non-pPPC polymeric protein,
which is directly involved in DHFR synthesis and consequently in
drug resistance. For instance, the structure of DHFR synthase
reported in the file with PDB-ID 3HBB is a PPC with four different
protein chains. In this regard, a computational model able to
predict non-pPPC such as DHFRs may be interesting for the
prediction of protein targets involved in drug resistance in both
parasite and mammalian, which may be useful in the design of
chemo-protective agents.

In any case, the high number of possible genes/proteins
discovered in genome/proteome of Plasmodium sp. determines
a higher number of possible pPPC/non-pPPC structures derived
from different PPIs in parasite and human hosts, which makes
difficult the exhaustive experimental investigation in terms of time
and resources [11,12]. In fact, many researchers in the field of
Molecular and Biochemical Parasitology have recognized the high
importance of different computational tools (statistical models,
servers, databases) to study the proteome and/or genome of P.
falciparum and P. vivax [13–18]. This fact determines that the
development of predictive models for pPPIs/non-PPIs discrimina-
tion becomes a very useful tool aimed at discovering new drug
targets. There are many theoretical methods for the prediction of
PPIs in humans and other organisms. Many of them are based on
the same approaches used for the study of protein structure–
function relationships but extended to PPIs such as: sequence
alignment techniques, phylogenic techniques, or alignment-free
parameters besides other methods, like molecular modeling,
incorporate knowledge about the 3D structure of the proteins
involved in the PPIs. These methods often make use of complex
trees representations (as input or output of the analysis) to repre-
sent these interactions as PPIs trees. Sequence-only methods are
often faster than 3D ones and need less structural information. On
the contrary, 3D methods give a more clear idea on the structure of
the protein and may be used to predict proteins with known spatial
structure but unknown function [19–27]. The importance of these
latter methods is that these functionally non-annotated structures
become common in the Protein Data Bank (PDB) with the devel-
opment of powerful characterization techniques [28]. Another role
of the computational methods is the possibility to study not only
the wild-type proteins but also the computational analysis of
mutations [29–33]. Specifically, in this work, we are interested in
computational methods to predict pPPIs that determine the
formation of non-covalent but physically stable PPCs between two
proteins that can be isolated and the 3D structure, chemically
characterized as a potential drug target. Protein complexes are
fundamental for understanding principles of cellular organizations.
As the sizes of PPI trees are increasing, accurate and fast protein
complex prediction from these PPI trees can be useful as a guide for
biological experiments to discover novel protein complexes [34].
Otherwise, it is the direct prediction of complexes by protein–
protein docking but it may become computationally expensive if
we aim at performing the screening of large databases [35]. It is also
of major importance to recall that nowadays it is not enough to
develop a predictive model; we should also implement it into
public servers, preferably of free access, for the use of the scientific
community. The server packages developed by Chou and Shen [36–
39], which predict the function of proteins from structural
parameters or explore protein structures, are good examples in this
regard. In any case, to the best of our knowledge, there is no web
server available in the literature or at least a theoretical method to
predict unique pPPC in Plasmodium and not present in humans or
other parasites or hosts, based on the 3D structure of the two
proteins involved in pPPIs or non-PPIs interactions.

Besides, González-Dı́az et al. introduced the method called
MARkovian CHemicals IN SIlico DEsign (MARCH-INSIDE 1.0) for the
computational design of small-sized drugs. In successive studies,
we have extended this method to perform fast calculation of 2D and
3D alignment-free numeric parameters to describe RNA secondary
structures based on molecular vibration information [40], and 3D
structure of proteins based on Van der Waals [41] or electrostatic
interactions [42]. Recently, the method has been renamed as
MARkov CHains Invariants for Networks SImulation & DEsign
(MARCH-INSIDE 2.0). The approach uses a Markov Chain model
(MCM) to calculate parameters of small-sized and also complex
chemical structures [43–45]. To this end, MARCH-INSIDE describes
the system as a stochastic matrix of interactions and/or transitions
between the parts of the system and associates this matrix to
a graph or complex network representation of this system, at the
same time. This describes more adequately the broad uses of the
method to numerically characterize the structure of drugs [46],
RNA [40], and proteins [41,47,48], as well as drug–drug networks
[49], drug–protein interactions [50], PPIs, and other systems such
as an MCM associated to a graph. In this regard, MARCH-INSIDE
uses networks similar to other known in proteomics, molecular,
biology, and molecular microbiology, where the nodes (connected
by links) are atoms (bonds), amino acids (electrostatic interactions),
proteins (PPIs), genes (co-expression), organisms and microor-
ganisms (parasite–host interactions) [51–58]. In Fig. 1 we depict the
3D structure and the Van der Waals surface for Thioredoxin (PDB-
ID SYRC) a pPPC present in P. falciparum clone 3d7 (A) and the
respective protein structure complex network graph for one of the
proteins of the pPPC (B). At this structural level, the nodes are
amino acids and we link two nodes with an edge if the distance
between them is lower than 15 Å (this type of network is also
known as contact map or protein residue networks) [59–66]. In
a very recent review, we have discussed the details and many



Fig. 1. 3D structure and Van der Waals surface for a P. falciparum protein (A) and
complex network (B).
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applications of the MARCH-INSIDE method to Molecular Microbi-
ology [67].

The last upgrade of MARCH-INSIDE (carried out by Munteanu
and González–Dı́az) was the implementation of the Internet portal
Bio-AIMS (http://miaja.tic.udc.es/Bio-AIMS/) with different web
server packages that may be used to predict different functions of
proteins from PDB files. These servers are inspired on the same
philosophy of online free access and use by all the international
research community, as mentioned in the previous paragraph. In
particular, the server called TargetPred package offers two new
Protein-QSAR servers. The first, ATCUNPred (http://miaja.tic.udc.es/
Bio-AIMS/ATCUNPred.php) is available for prediction of ATCUN-
mediated DNA-clevage anticancer proteins [68]. The second server,
EnzClassPred is available at http://miaja.tic.udc.es/Bio-AIMS/
EnzClassPred.php and can be used to predict enzyme classes from
PDB files without function annotation [69]. For all these reasons, in
this work we use the MARCH-INSIDE approach for the first time to
solve the problem of predicting specific pPPCs from the 3D struc-
ture of two proteins that may undergo pPPIs or not. Last but not
least, we implemented the predictor in a new web server named
PlasmodPPI freely available to public at http://miaja.tic.udc.es/Bio-
AIMS/PlasmodPPI.php. In Fig. 2 we depict a flowchart for all the
steps taken in this work to generate the new classifiers and server.
2. Materials and methods

2.1. Electrostatic entropy measures for PPIs

In previous works we have used different entropy invariants
derived from an MCM to describe the 3D structure of one protein
backbone in structure–property relationship studies. The qk(R)
parameters used represent the average electrostatic entropy (q) due
to the interactions between all pairs of amino acids allocated inside
a specific protein region (R) and placed at a distance k from each
other. In this work we want to use qk(R) values of two proteins, qk

(1R) for protein 1 and qk (2R) for protein 2, in order to generate
structural parameters describing PPI between these proteins. To
this end, we introduced herein for the first time a new type of PPI
invariants in the sense that they do not depend on the interchange
of proteins so that we do not need to label and distinguish them for
calculation. We introduce, with this aim, three types of invariants
(ti) tiqk(R): PPI Average Entropy Invariant (ti¼ a), PPI Entropy
Difference Invariant (ti¼ d), and PPI Entropy Product Invariant
(ti¼ p):

aqkðRÞ ¼ aqkð1R1
2R1Þ ¼

1
2
½qkð1R1Þ þ qkð2R1Þ� (1)

dqkðRÞ ¼ dqkð1R1;
2R1Þ ¼ jqkð1R1Þ � qkð2R1Þj (2)

pqkðRÞ ¼ pqkð1R1;
2R1Þ ¼ qkð1R1Þ,qkð2R1Þ (3)

Notably, in order to guarantee that these parameters are
invariant to protein labeling as 1 or 2, we have to always use the
same 1R¼ 2R¼ R and k1¼ k2¼ k values. In order to calculate the
qk(R) values for each protein the method uses as a source of protein
macromolecular descriptors the stochastic matrices 1Pe built up as
squared matrices (n� n), where n is the number of amino acids (aa)
in the protein. The subscript e points to the electrostatic type of
molecular force field. In previous works we have predicted the
protein function based on qk(R) values for different types of inter-
actions or molecular fields. The main types of molecular fields used
are the following: Electrostatic, vdW, and HINT entropies. In this
paper, we calculated qk(R) values only for Electrostatic entropies.
These values have been used herein to calculate PPIs invariants and
next as inputs to generate the QSAR model (see description of PPI
invariants above). However, the detailed explanation for the
calculation of qk(R) values has been published before. As follows, we
give the formula for kq(R) values and some general explanations
[41,67,70]:

qkðRÞ ¼ �
Xn

j¼1

kPjðRÞ,log½kPjðRÞ� (4)

It is remarkable that the average entropy measures depend on
the absolute probabilities kPj(R) according to which the amino acid
jth has an electrostatic interaction with the rest of amino acids that
lie within the same protein region R. These probabilities refer to
amino acids placed at a distance equal to k-times the cut-off
distance (rij¼ k$rcut-off). The method uses a Markov Chain Model
(MCM) to calculate these probabilities, which also depend on the
3D interactions between all pairs of amino acids placed at distance
rij in r3 in the protein structure. However, for the sake of simplicity,
a truncation or cut-off function aij is applied in such a way that
a short-term interaction takes place in a first approximation only
between neighboring aa (aij¼ 1 if rij< rcut-off). Otherwise, the
interaction is banished (aij¼ 0). The relationship aij may be dis-
played as a protein structure complex network. In this network the
nodes are the Ca atoms of the amino acids and the edges connect
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Fig. 2. Example of spatial distribution of core, inner, middle, and surface amino acids.
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pairs of amino acids with aij¼ 1. Euclidean 3D space r3¼ (x, y, z)
coordinates of the Ca atoms of amino acids listed on protein PDB
files. For the calculation, all water molecules and metal ions were
removed [67]. All calculations were carried out with our in-house
software MARCH-INSIDE 2.0 [71].

For the calculation, the MARCH-INSIDE software always uses the
full matrix, never a sub-matrix, but may run the last summation
term either for all amino acids or only for some specific groups,
called Orbits or Regions (R). These regions are often defined in
geometric terms and called core, inner, middle or surface region. In
Fig. 3 we represented the orbits of protein (c corresponds to core, i
to inner, m to middle, and s to surface orbits, respectively). The
diameters of the orbits, are: 0� orbit c< 25, 25� orbit i< 50,
50� orbit m< 75, and 76� orbit s� 100; expressed in terms of
percentage of the longest distance rmax with respect to the center of
charge. Additionally, we take into consideration the total orbit (t)
that contains all the amino acids in the protein (orbit diameter 0–
100% of rmax). Consequently, we can calculate different qk(R) for the



Fig. 3. Flowchart for all the steps given in the construction of the classifiers and server.
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amino acids contained in an orbit (c, i, m, s, or t) and placed at
a topological distance k within this orbit (k is the order named) [72–
75]. In this work, we calculated altogether 5(types of region-
s)� 6(orders considered)¼ 30 qk(R) indices for each protein.

In order to carry out the calculations referred to in equation (1)
for any kind of entropy and detailed in the previous equations, for
electrostatic entropy, the elements (1pij) of 1Pe and the absolute
initial probabilities Apk(j) were calculated as follows [67]:

1pij ¼
aij,Eij

Pdþ1
m¼1 aim,Eim

¼
aij,

qi,qj

ðdijÞ2
Pdþ1

m¼1 aim,qi,qm

ðdimÞ2
(5)

Ap0ðjÞ ¼
qj

d0jPn
m¼1

qm

ðd0mÞ2
(6)

where qi and qj are the electronic charges for amino acids ith-aa and
the jth-aa and the neighborhood relationship (truncation function
aij¼ 1) is turned on if these amino acids participate in a peptidic
hydrogen bond or dij< dcut-off¼ 5 Å [67]. In this regard, the trun-
cation of the molecular field is usually applied to simplify all the
calculations in large biological systems. The distance dij is the
Euclidean distance between the Ca atoms of the two amino acids
and d0j the distance between the amino acid and the center of
charge of the protein. Both kinds of distances were derived from the
x, y and z coordinates of the amino acids collected from the protein
PDB files. All calculations were carried out with our in-house
software MARCH-INSIDE. All water molecules and metal ions were
removed for the calculation [67].

2.2. LDA models

LDA is frequently used for classification/prediction problems in
physical anthropology, but it is unusual to find examples where
researchers consider the statistical limitations and assumptions
required for this technique. In this work, all LDA models have been
trained with the software STATISTICA 6.0�, for which our labora-
tory holds rights of use [76]. In LDA we use several variable selec-
tion techniques to seek the model: i) All Effects (include all
parameters), ii) Forward-stepwise, iii) Forward-entry, iv) Backward-
stepwise, v) Backward-removal, and vi) Best subsets. Unless we
specify a different value, we always set a prior probability of
p(pPPI)¼ p(npPPI)¼ 0.5. The LDA discriminant equation was
obtained using as input the three types of PPI invariants tiqk(R). The
general form of the equation obtained by LDA is:

SðpPPCÞ ¼
X5;5;3

R;k;ti

aR;k;ti,
tiqkðRÞ þ a0 (7)

S(pPPC), the output of this model, is a real value variable that
scores the propensity of a protein pair to undergo a pPPI interaction
and not npPPIs forming a physically stable PPCs only in Plasmodium
sp. The c2 and p-level value were examined in order to test the
statistical significance of the model. The Accuracy, Specificity,
Sensitivity were used to quantify the goodness-of-fit and the
discriminatory power of the model. Different authors like have
applied this type of LDA model using different classes of input
variables to construct QSAR models for proteins or nucleic acids
[77–80].

2.3. CT models

CTs have been used to test a non-linear model which is not
based on assumptions of parametric distribution of data as well as
non-linear models [81]. We used as Ordered Predictors the vari-
ables obtained in the Forward stepwise of the LDA. Starting from
now on, several split methods were carried out: i) CT Discriminant-
based Linear Combinations (CT-LC), ii) Discriminant-based univar-
iate splits (CT-US), and CRT-style exhaustive search from univariate
splits (CRT). In CRT we used three different measures of Goodness-
of-fit Gini Measure, Chi-Square, and G-Square. Like in LDA we
always set a prior probability of p(pPPI)¼ p(npPPI)¼ 0.5, unless we
specify a different value. Last, we used a FACT-style direct stopping
rule with a value of 0.01 to control the length of the CT. All the CTs
have been trained with the software STATISTICA 6.0�, for which our
laboratory holds rights of use [76].

2.4. Dataset

The protein structures were downloaded from PDB [82] using
the following schemes for PDB-database search: (i) introducing the
name of the parasite species (Plasmodium) as input parameter in
the search item called source organism (for positive cases) or (ii)
introducing the PDB-IDs for all the proteins contained in the list
reported in the article of Dobson and Doig [83]. The positive cases
(pPPI) are those protein–protein pairs that make up a stable
complex that has been structurally characterized (3D structure) in
Plasmodium species (Plasmodium sp). The list of negative cases
(npPPI), search scheme (b), contain enzymes and other proteins
present in humans and many other organisms including other
parasites that are not present in Plasmodium sp. The dataset con-
sisted of 5257 pairs of proteins (774 pPPIs and 4483 npPPIs) from
more than 20 organisms, including parasites and human or cattle
hosts. Altogether, 581 pPPIs and 3395 npPPIs were used in training
and 193 pPPIs and 1088 npPPIs were used in validation. Detailed
information about the PDB-ID, the values of the electrostatic
entropy indices, the corresponding observed classification, and the
predicted classification for each pPPI or npPPI pair are given in the
Supporting information.

3. Results and discussion

Several researchers have demonstrated the high performance
of different types of computational classifiers in protein or PPI
structure–function relationship studies based on different algo-
rithms as is the case, for instance, of the works carried out by Chou
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et al. [84–90], Fernandez and Caballero [91–93]. In particular, the
LDA algorithm, a simpler type of the classifier used herein, was
employed to train linear models based on different combinations
of parameters [94].
3.1. Linear discriminant analysis (LDA) models

A simple Linear Discriminant Analysis (LDA), with only four
variables, was developed to assign each protein pair as pPPI or
npPPI. The best equation found was:

SðpPPCÞ ¼ �0:09506,dq3ðmÞ � 0:02219,dq4ðsÞ

� 0:62697,dq5ðtÞ þ 0:51126,dqðtÞ � 0:30646

N ¼ 3976 c2 ¼ 947:95 p < 0:00 (8)

The statistical parameters for the above equation are: Number of
protein entries in training (N), Chi-square statistic (c2), and error
level (p-level), which have to be <0.05 [95]. All the statistical data
of this model are summed up in Table 1. The discriminant function
reported in the results section presented statistically significant
results of goodness-of-fit for both training and validation series,
carried out with an external series of pPPI and npPPI that were
never used to train the model. Interestingly four variables, dq3(m),
dq4(s), dq4(t) and dq5(t), out of more than 30 parameters calculated
appear in many models. These parameters have the general
formula dqk(R)¼ jqk(R)prot1� qk(R)prot2j, which are the absolute
difference between the electrostatic entropy values qk(R) for amino
Table 1
Summary of results for LDA, CT, and ANN analysis.

Technique Training sub-set Validation sub-set

Profile Parameters Group % npPPI pPPI % npPPI pPPI

LDA Specificity npPPI 85.0 2886 509 82.4 897 191
Forward

stepwise
Sensitivity pPPI 94.8 30 551 92.7 14 179

Accuracy Total 86.4 – – 84.0 – –

CT Specificity npPPI 98.5 3343 52 98.0 1066 22
LC Sensitivity pPPI 91.2 51 530 90.2 19 174

Accuracy Total 97.4 – – 96.8 – –

CT Specificity npPPI 95.6 3247 148 96.5 1050 38
US Sensitivity pPPI 83.8 94 487 84.5 30 163

Accuracy Total 93.9 – – 94.7 – –

CRT Specificity npPPI 97.6 3315 80 97.8 1064 24
Gini measure Sensitivity pPPI 84.7 89 492 83.4 32 161

Accuracy Total 95.7 – – 95.6 – –

CRT Specificity npPPI 97.6 3315 80 97.8 1064 24
Chi-square Sensitivity pPPI 84.7 89 492 83.4 32 161

Accuracy Total 95.7 – – 95.6 – –

CRT Specificity npPPI 98.6 3348 47 98.4 1071 17
G-square Sensitivity pPPI 81.8 106 475 80.3 38 155

Accuracy Total 96.2 – – 95.7 – –

MLP Sensitivity pPPI 83.3 484 97 82.9 160 33
4:4-7-1:1 Specificity npPPI 84.0 544 2851 82.9 186 902

Accuracy Total 83.9 – – 82.9 – –

MLP Sensitivity pPPI 83.1 483 98 81.9 158 35
4:4-6-6-1:1 Specificity npPPI 83.0 577 2818 81.6 200 888

Accuracy Total 83.0 – – 81.7 – –

RBF Sensitivity pPPI 18.9 110 471 20.2 39 154
1:1-1-1:1 Specificity npPPI 17.3 2807 588 15.5 919 169

Accuracy Total 17.6 – – 16.2 – –

LNN Sensitivity pPPI 92.6 538 43 90.2 174 19
4:4–1:1 Specificity npPPI 92.2 264 3131 90.4 104 984

Accuracy Total 92.3 – – 90.4 – –
acids on the surface of the two proteins forming the PPI pairs. This
fact indicates that the difference between the surface electrostatic
entropy is very important not only for PPI interactions in general
but also to discriminate the unique complex present in Plasmodium
sp. (pPPIs) and not in other organisms. The model presents a good
overall classification of pPPI and npPPI. This level of accuracy is
generally accepted by other researchers that have applied LDA to
find QSAR models useful in molecular parasitology and related
areas; e.g., the works of Garcı́a-Domenech, Marrero-Ponce, Bruno-
Blanch, Galvez, Gozalbes and others predicting active compounds
against Trypanosoma cruzi, Mycobacterium avium, Toxoplasma gon-
dii, P. falciparum, Trichomonas vaginalis, Fasciola hepatica, and other
parasites [96–100]; see also the works of Marrero-Ponce on protein
and DNA/RNA QSAR studies [101–103].
3.2. Artificial neural network (ANN) models

The comparison of linear and non-linear models is essential
to test how directly our parameters are correlated to the bio-
logical property [104]. The automatic selection of variables
(features) was activated for all models. In particular, the Linear
Neural Network (LNN) algorithm and other types of Artificial
Neural Network (ANN), were used herein to train different
linear and non-linear models based on different combinations
of parameters. Table 1 also depicts the results for the best
models found. The profile of the ANN model was specified with
a simple notation as follows: ANN type Niv: Nin–NH1–NH2–
Non:Nov. The ANN types presented, besides LNN, are Multi-Layer
Perceptron (MLP), Probabilistic Neural Network (PNN), and
Radial Basis Function (RBF) [105]. The parameter Niv is the
number of input variables, Nin is the number of input neurons
(one per input variable), NH1 is the number of neurons in the
first Hidden layer (H1), NH2 is the number of neurons in the
second Hidden layer (H1), Non is the number of output neurons,
and Nov is the number of output variables.
Fig. 4. Illustrative example of the topology used for different ANNs trained in this
work.



Fig. 5. ROC curve for pPPC predictor.
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In particular, the model LNN 4:4–1:1 is the simplest model
found with the highest levels of Sensitivity¼ 92.6, Specific-
ity¼ 92.2 and Accuracy¼ 92.3 in the training set. These values are
excellent considering that this predictor uses only two molecular
descriptors of the PPI pair, which is a very complex structure in
chemical terms, to fit a large data set of 581 pPPIs and 3395 npPPIs.
The profile 4:4–1:1 indicates that this model assign the values of
four input variables to four input neurons that perform a weighed
sum and assigns the result to one output neuron; which gives the
final result of the case classification according to the threshold
value that has been optimized. In addition, the model LNN 4:4–1:1
also presented a higher levels of Sensitivity¼ 90.2, Specific-
ity¼ 90.4 and Accuracy¼ 90.4 in external validation (test) set (see
Table 1). In Fig. 4 we illustrate the topology of this LNN network
compared with a non-linear ANN. Interestingly, four variables
Fig. 6. Structure of the
dq3(m), dq4(s), dq4(t) and dq5(t), out of more than 30 parameters
calculated, appear in many models. This fact indicates that the
difference between the electrostatic entropy is very important not
only for PPI interactions in general but also to discriminate a unique
complex present in Plasmodium (pPPIs). On the other hand, the
product and average invariant types (aqk(R) and pqk(R)) do not
appear to be relevant.

We also validated the linear model by means of a ROC curve
analysis (see Fig. 5) to demonstrate that there is a linear and not an
indirect non-linear relationship between our indices and the clas-
sification of pPPCs [106]. The values of the area under the ROC curve
for this model are 0.95 and 0.96 very close to 1 (the highest possible
value) and notably different from 0.5 (the typical value of a random
classifier). This kind of analysis is an accepted tool in Bioinformatics
to demonstrate which classification methods outperform the other
methods, e.g. the study carried out by Xu and Du related to PPIs
[107] or the work of Mahdavi and Lin [108]. This first search points
to a linear instead of non-linear relationship between pPPI
prediction and dqk(R) values, giving additional proofs of the validity
of our methodology. For instance, in Table 1 we can see that more
complicated models with non-linear profiles do not improve the
linear model and give even worse results sometimes.
3.3. Classification Tree (CT) models

Last, considering that non-linear ANN did not notably improved
LDA, we used the variables pre-selected by LDA as inputs for
a Classification Tree (CT) analysis. With complete data sets, LDA
may be a simpler and sometimes better choice. However, the
testing of data prior to analysis is necessary, and CTs are recom-
mended either as a replacement for LDA or as a supplement
whenever data do not meet relevant assumptions [109]. Table 1
also depicts the results for the best CT models found. The auto-
matically selection of variables (features) was activated for all
models if available. In Fig. 6 we illustrate the graph representation
CT model found.



Fig. 7. Example of use of PlasmodPPI web

Table 2
Structure of the CT-LC model.

Parameters Parent nodes

Child nodes 1 2 3 4 5

Left branch 2 4
Right branch 3 5
npPPI 3395 3018 377 325 52
pPPI 581 39 542 12 530
Predicted class npPPI npPPI pPPI npPPI pPPI

Split conditions (LCi� Split constant)

LCi LC1 LC2 LC3 LC4 LC5

Split constant 0.011758 0 0.045360 0 0
dq3(m) �0.000827 0 �0.004075 0 0
dq4(s) �0.000193 0 �0.001044 0 0
dq4(t) 0.005454 0 0.018150 0 0
dq5(t) �0.004447 0 �0.014544 0 0
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of the CT-LC trained in this work and in Table 2 we give details
about the structure of this CT and the split rules derived. In
particular, the model CT-LC is the simplest CT model found with the
highest levels of Sensitivity¼ 91.2% Specificity¼ 98.5% and Accu-
racy¼ 97.4% in the training set. These values are excellent consid-
ering that this predictor uses only two molecular descriptors of the
PPI pair; which is a very complex structure in chemical terms, to fit
a large data set of 582 TPPIs and 3394 non-TPPIs (see Table 1). In
fact, the CT analysis yielded the best model found in this work.

3.4. PlasmodPPI, a server for PPC plasmodium targets

Last, we have to consider that with the advent of Internet it is
important not only to develop new predictive models for proteome
research but also to carry out the implementation of these models
in public web servers available to other research groups [36–
39,110–113]. In this regard, we implemented this predictor into
a web server freely available to public at http://miaja.tic.udc.es/Bio-
AIMS/PlasmodPPI.php. This is the first model and web server that
tool: (A) Input and (B) Output pages.

http://miaja.tic.udc.es/Bio-AIMS/PlasmodPPI.php
http://miaja.tic.udc.es/Bio-AIMS/PlasmodPPI.php
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predicts how unique is a protein–protein complex in Plasmodium
proteome with respect to other parasites and hosts breaking new
ground for anti-plasmodium drug target discovery.

In order to demonstrate the practical utility of this Web server,
three examples of protein chain pairs have been used to evaluate
the possibility to make up unique complexes in Plasmodium,
a human pathogen parasite: 3C5IA-3C5IE, 2F6IE-2GHUA and
1SYRC-1SYRF. Fig. 7 presents the input (A) and output (B) web
pages of the PlasmodPPI tool. The first pair contains the first chain A
of the Plasmodium knowlesi choline kinase (a transferase, 3C5I) and
the cleaved fragment of N-terminal expression tag (chain E), all
expressed in Escherichia coli. Choline kinase is the first enzyme in
the Kennedy pathway (CDP-choline pathway) for the biosynthesis
of the most essential phospholipid, phosphatidylcholine, in Plas-
modium. In addition, choline kinase also plays a pivotal role in
trapping essential polar head group choline inside the malaria
parasite. The inhibition of choline kinase will lead to a decrease in
phosphocholine, which in turn causes a decrease in phosphatidyl-
choline biosynthesis, resulting in death of the parasite. This pair of
protein chains is evaluated to make up the unique complex in
Plasmodium that can be a target for new anti-parasite drugs. The
second pair example is formed by the chain E of the 2F6I hydrolase
[114], a ATP-dependent CLP protease (serine-type endopeptidase)
from Plasmodium falciparum (expressed in E. coli) and the chain A
of the 2GHU hydrolase, Falcipain-2 (FP-2) of P. falciparum [115]. FP-2
is a papain-family (C1A) cysteine protease that plays an important
role in the parasite life cycle by degrading erythrocyte proteins,
most notably hemoglobin. Inhibition of FP-2 and its paralogues
prevents parasite maturation. These two chains of hydrolases are
not evaluated by our tool to form a unique complex. This can be
explained by the different targets of these hydrolases and different
cellular localizations (2F6I in cytoplasma and 2GHU in food vacuole
for hemoglobin degradation and cleavage of cytoskeletal elements).
The last example is formed by the chains C and F of the 1SYR
protein, a Plasmodium falciparum thioredoxin in the genetic
structure with an unknown function [116]. These chains are eval-
uated to form a unique complex according to the localization of
both chains in the same protein. PlasmodPPI tool can become
important for the discovery of new anti-plasmodium drug targets
and can be useful as model for building similar models for other
types of parasites or other organisms.

4. Conclusions

The overall findings suggest that the new type of parameters
introduced herein is useful to numerically characterize the struc-
ture of PPCs, formed after PPIs, in protein structure–function
studies. We also demonstrate that it is possible to distinguish
between PPCs (pPPCs cases) formed according to unique PPIs in
Plasmodium sp. (pPPIs) and not present in other parasites or host
organisms using these parameters. We generate and compare
linear and non-linear classifiers. We show that it is possible to
predict PPIs that undergo pPPC formation with a simple linear
classifier based on the absolute difference between 3D protein
surface electrostatic entropies of the pair proteins. The model was
implemented in a public web server, available for free-of-charge
use to the scientific community.

Acknowledgments

We thank the kind and professional attention of Prof. J.E. Mark
(Computational & Theoretical Polymer Science editor for Polymer)
as well as the opinion of the reviewers. Gonzalez–Dı́az H. and
Munteanu C.R. acknowledge research contract financed by the
Contract/grant sponsor: Isidro Parga Pondal Program, Xunta de
Galicia. The authors thank for the partial financial support from the
grants 2007/127 and 2007/144 from the General Directorate of
Scientific and Technological Promotion of the Galician University
System of the Xunta de Galicia and from grant (Ref. PIO52048 and
RD07/0067/0005) funded by the Carlos III Health Institute.

Appendix. Supplementary data

Supplementary data associated with this article can be found in
online version, at doi:10.1016/j.polymer.2009.11.029.

References

[1] Verra F, Mangano VD, Modiano D. Parasite Immunol 2009;31(5):234–53.
[2] Mueller I, Galinski MR, Baird JK, Carlton JM, Kochar DK, Alonso PL, et al.

Lancet Infect Dis 2009;9(9):555–66.
[3] Bonilla JA, Bonilla TD, Yowell CA, Fujioka H, Dame JB. Mol Microbiol

2007;65(1):64–75.
[4] Turschner S, Efferth T. Mini Rev Med Chem 2009;9(2):206–2124.
[5] Sanchez CP, Rotmann A, Stein WD, Lanzer M. Mol Microbiol 2008;70(4):

786–98.
[6] Sanchez CP, Rohrbach P, McLean JE, Fidock DA, Stein WD, Lanzer M. Mol

Microbiol 2007;64(2):407–20.
[7] Nunes MC, Goldring JP, Doerig C, Scherf A. Mol Microbiol 2007;63(2):

391–403.
[8] Siden-Kiamos I, Ecker A, Nyback S, Louis C, Sinden RE, Billker O. Mol

Microbiol 2006;60(6):1355–63.
[9] Sam-Yellowe TY. Exp Parasitol 1993;77(2):179–94.

[10] Volpato JP, Pelletier JN. Drug Resist Updat 2009;12(1–2):28–41.
[11] Carucci DJ, Yates 3rd JR, Florens L. Int J Parasitol 2002;32(13):1539–42.
[12] Coppel RL, Black CG. Int J Parasitol 2005;35(5):465–79.
[13] Bender A, van Dooren GG, Ralph SA, McFadden GI, Schneider G. Mol Biochem

Parasitol 2003;132(2):59–66.
[14] Carlton JM, Muller R, Yowell CA, Fluegge MR, Sturrock KA, Pritt JR, et al. Mol

Biochem Parasitol 2001;118(2):201–10.
[15] Coppel RL. Mol Biochem Parasitol 2001;118(2):139–45.
[16] Cui L, Fan Q, Hu Y, Karamycheva SA, Quackenbush J, Khuntirat B, et al. Mol

Biochem Parasitol 2005;144(1):1–9.
[17] Gunasekera AM, Patankar S, Schug J, Eisen G, Kissinger J, Roos D, et al. Mol

Biochem Parasitol 2004;136(1):35–42.
[18] Huestis R, Fischer K. Mol Biochem Parasitol 2001;118(2):187–99.
[19] Sharon I, Davis JV, Yona G. Methods Mol Biol 2009;541:61–88.
[20] Liu L, Cai Y, Lu W, Feng K, Peng C, Niu B. Biochem Biophys Res Commun

2009;380(2):318–22.
[21] Skrabanek L, Saini HK, Bader GD, Enright AJ. Mol Biotechnol 2008;38(1):1–17.
[22] Najafabadi HS, Salavati R. Genome Biol 2008;9(5):R87.
[23] Kim S, Shin SY, Lee IH, Kim SJ, Sriram R, Zhang BT. Nucleic Acids Res

2008;36(Web Server issue):W411–5.
[24] Jaeger S, Gaudan S, Leser U, Rebholz-Schuhmann D. BMC Bioinformatics

2008;8(9 Suppl):S2.
[25] Burger L, van Nimwegen E. Mol Syst Biol 2008;4:165.
[26] Scott MS, Barton GJ. BMC Bioinformatics 2007;8:239.
[27] Zvelebil MJ, Tang L, Cookson E, Selkirk ME, Thornton JM. Mol Biochem Par-

asitol 1993;58(1):145–53.
[28] von Grotthuss M, Plewczynski D, Ginalski K, Rychlewski L, Shakhnovich EI.

BMC Bioinformatics 2006;7:53.
[29] Lappalainen I, Thusberg J, Shen B, Vihinen M. Proteins 2008;72(2):779–92.
[30] Shen B, Bai J, Vihinen M. Protein Eng Des Sel 2008;21(1):37–44.
[31] Shen B, Vihinen M. Protein Eng Des Sel 2004;17(3):267–76.
[32] Liu ML, Shen BW, Nakaya S, Pratt KP, Fujikawa K, Davie EW, et al. Blood

2000;96(3):979–87.
[33] Shen B, Nolan JP, Sklar LA, Park MS. Nucleic Acids Res 1997;25(16):3332–8.
[34] Chua HN, Ning K, Sung WK, Leong HW, Wong L. J Bioinform Comput Biol

2008;6(3):435–66.
[35] Smith GR, Sternberg MJ. Curr Opin Struct Biol 2002;12(1):28–35.
[36] Shen HB, Chou KC. Anal Biochem 2008;373(2):386–8.
[37] Shen HB, Chou KC. Protein Eng Des Sel 2007;20(11):561–7.
[38] Chou KC, Shen HB. Biochem Biophys Res Commun 2007; doi:10.1016/

j.bbrc.2007.1006.1027.
[39] Chou KC, Shen HB. Nat Protoc 2008;3(2):153–62.
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[46] Santana L, Uriarte E, González-Dı́az H, Zagotto G, Soto-Otero R, Mendez-
Alvarez E. J Med Chem 2006;49(3):1149–56.

[47] Aguero-Chapin G, Varona-Santos J, de la Riva GA, Antunes A, Gonzalez-Villa T,
Uriarte E, et al. J Proteome Res 2009;8(4):2122–8.

[48] Concu R, Dea-Ayuela MA, Perez-Montoto LG, Bolas-Fernandez F, Prado-
Prado FJ, Podda G, et al. J Proteome Res 2009;8(9):4372–82.

[49] Santana L, Gonzalez-Diaz H, Quezada E, Uriarte E, Yanez M, Vina D, et al.
J Med Chem 2008;51(21):6740–51.

[50] Vina D, Uriarte E, Orallo F, Gonzalez-Diaz H. Mol Pharmacol 2009;6(3):825–35.
[51] Bornholdt S, Schuster HG. Handbook of graphs and complex networks: from

the genome to the internet. Wheinheim: WILEY-VCH GmbH & CO. KGa;
2003.

[52] Mazurie A, Bonchev D, Schwikowski B, Buck GA. Bioinformatics 2008;24(22):
2579–85.

[53] Managbanag JR, Witten TM, Bonchev D, Fox LA, Tsuchiya M, Kennedy BK,
et al. PLoS One 2008;3(11):e3802.

[54] Witten TM, Bonchev D. Chem Biodivers 2007;4(11):2639–55.
[55] Bonchev D, Buck GA. J Chem Inf Model 2007;47(3):909–17.
[56] Bonchev D. SAR QSAR Environ Res 2003;14(3):199–214.
[57] Estrada E. J Proteome Res 2006;5(9):2177–84.
[58] Estrada E. Proteomics 2006;6(1):35–40.
[59] Gupta N, Mangal N, Biswas S. Proteins 2005;59(2):196–204.
[60] Webber Jr CL, Giuliani A, Zbilut JP, Colosimo A. Proteins 2001;44(3):

292–303.
[61] Gobel U, Sander C, Schneider R, Valencia A. Proteins 1994;18(4):309–17.
[62] Krishnan A, Zbilut JP, Tomita M, Giuliani A. Curr Protein Pept Sci

2008;9(1):28–38.
[63] Krishnan A, Giuliani A, Zbilut JP, Tomita M. PLoS One 2008;3(5):e2149.
[64] Palumbo MC, Colosimo A, Giuliani A, Farina L. FEBS Lett 2007;581(13):

2485–9.
[65] Krishnan A, Giuliani A, Zbilut JP, Tomita M. J Proteome Res 2007;6(10):

3924–34.
[66] Krishnan A, Giuliani A, Tomita M. PLoS ONE 2007;2(6):e562.
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[73] González-Dı́az H, Molina-Ruiz R, and Hernandez I. MARCH- INSIDE v3.0

(MAR kov CH ains IN variants for SI mulation & DE sign); Windows supported
version under request to the main author contact email: gonzalezdiazh@
yahoo.es; 2007.

[74] Cruz-Monteagudo M, Gonzalez-Diaz H. Eur J Med Chem 2005;40(10):
1030–41.

[75] Gonzalez-Diaz H, Aguero-Chapin G, Varona J, Molina R, Delogu G, Santana L,
et al. J Comput Chem 2007;28(6):1049–56.

[76] StatSoft.Inc. STATISTICA (data analysis software system), version 6.0, www.
statsoft.com.Statsoft, Inc; 2002.

[77] Marrero-Ponce Y, Medina-Marrero R, Castro AE, Ramos de Armas R, Gonzá-
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